Let $d \in R$, and  $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta  \in \left[ {0,2\pi } \right]$. If the minimum value of det $(A)$ is $8$, then a value of $d$ is

  • [JEE MAIN 2019]
  • A

    $-5$

  • B

    $-7$

  • C

    $2\left( {\sqrt 2  + 1} \right)$

  • D

    $2\left( {\sqrt 2  + 2} \right)$

Similar Questions

The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :

Evaluate the determinants

$\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$

In a square matrix $A$ of order $3, a_{i i}'s$ are the sum of the roots of the equation $x^2 - (a + b)x + ab= 0$; $a_{i , i + 1}'s$ are the product of the roots, $a_{i , i - 1}'s$ are all unity and the rest of the elements are all zero. The value of the det. $(A)$ is equal to

Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations

$x+2 y+z=7$

$x+\alpha z=11$

$2 x-3 y+\beta z=\gamma$

Match each entry in List - $I$ to the correct entries in List-$II$

List - $I$ List - $II$
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has ($1$) a unique solution
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has ($2$) no solution

($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$,

then the system has

($3$) infinitely many solutions
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has ($4$) $x=11, y=-2$ and $z=0$ as a solution
  ($5$) $x=-15, y=4$ and $z=0$ as a solution

Then the system has

  • [IIT 2023]

If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$