Let $d \in R$, and $A = \left[ {\begin{array}{*{20}{c}} { - 2}&{4 + d}&{\left( {\sin \,\theta } \right) - 2}\\ 1&{\left( {\sin \,\theta } \right) + 2}&d\\ 5&{\left( {2\sin \,\theta } \right) - d}&{\left( { - \sin \,\theta } \right) + 2 + 2d} \end{array}} \right]$, $\theta \in \left[ {0,2\pi } \right]$. If the minimum value of det $(A)$ is $8$, then a value of $d$ is
$-5$
$-7$
$2\left( {\sqrt 2 + 1} \right)$
$2\left( {\sqrt 2 + 2} \right)$
The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :
Evaluate the determinants
$\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
Let $\alpha, \beta$ and $\gamma$ be real numbers. consider the following system of linear equations
$x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List - $I$ to the correct entries in List-$II$
List - $I$ | List - $II$ |
($P$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has | ($1$) a unique solution |
($Q$) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has | ($2$) no solution |
($R$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has |
($3$) infinitely many solutions |
($S$) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has | ($4$) $x=11, y=-2$ and $z=0$ as a solution |
($5$) $x=-15, y=4$ and $z=0$ as a solution |
Then the system has
If the lines $ax + y + 1 = 0$, $x + by + 1 = 0$ and $x + y + c = 0$ (where $a, b$ and $c$ are distinct and different from $1$ ) are concurrent, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}} =$